ONE 223 complex.c return rb_funcall(x, id_eqeq_p, 1, ONE); ONE 814 complex.c n = f_mul(bdat->real, f_add(ONE, f_mul(r, r))); ONE 829 complex.c n = f_mul(bdat->imag, f_add(ONE, f_mul(r, r))); ONE 891 complex.c return f_quo(ONE, x); ONE 907 complex.c return f_complex_new_bang1(CLASS_OF(self), ONE); ONE 1957 complex.c f_complex_new_bang2(rb_cComplex, ZERO, ONE))); ONE 2268 complex.c f_complex_new_bang2(rb_cComplex, ZERO, ONE)); ONE 213 rational.c return rb_funcall(x, id_eqeq_p, 1, ONE); ONE 420 rational.c return nurat_s_new_internal(klass, ZERO, ONE); ONE 435 rational.c den = ONE; ONE 462 rational.c return nurat_s_new_internal(klass, x, ONE); ONE 551 rational.c den = ONE; ONE 753 rational.c other, ONE, '+'); ONE 794 rational.c other, ONE, '-'); ONE 874 rational.c other, ONE, '*'); ONE 918 rational.c other, ONE, '/'); ONE 987 rational.c return f_rational_new_bang1(CLASS_OF(self), ONE); ONE 1001 rational.c return f_rational_new_bang1(CLASS_OF(self), ONE); ONE 1034 rational.c num = ONE; ONE 1035 rational.c den = ONE; ONE 1306 rational.c if (f_lt_p(n, ONE)) ONE 1448 rational.c #define f_reciprocal(x) f_quo(ONE, (x)) ONE 1515 rational.c p1 = ONE; ONE 1516 rational.c q0 = ONE; ONE 1523 rational.c k = f_sub(c, ONE); ONE 2025 rational.c return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln))); ONE 2062 rational.c den = f_lshift(ONE, f_sub(ONE, n)); ONE 2064 rational.c a = rb_rational_new2(f_sub(two_times_f, ONE), den); ONE 2065 rational.c b = rb_rational_new2(f_add(two_times_f, ONE), den); ONE 2072 rational.c den = f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)); ONE 2200 rational.c *num = rb_rational_new2(ZERO, ONE); ONE 2206 rational.c *num = rb_rational_new2(ip, ONE);