root/ccan/list/list.h

/* [previous][next][first][last][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. list_head_init
  2. list_node_init
  3. list_add_after_
  4. list_add_
  5. list_add_before_
  6. list_add_tail_
  7. list_empty_
  8. list_empty_nodebug
  9. list_del_
  10. list_del_init_
  11. list_del_from
  12. list_swap_
  13. list_top_
  14. list_pop_
  15. list_tail_
  16. list_append_list_
  17. list_prepend_list_
  18. list_node_to_off_
  19. list_node_from_off_
  20. list_entry_or_null

/* Licensed under BSD-MIT - see ccan/licenses/BSD-MIT file for details */
#ifndef CCAN_LIST_H
#define CCAN_LIST_H
#include <assert.h>
#include "ccan/str/str.h"
#include "ccan/container_of/container_of.h"
#include "ccan/check_type/check_type.h"

/**
 * struct list_node - an entry in a doubly-linked list
 * @next: next entry (self if empty)
 * @prev: previous entry (self if empty)
 *
 * This is used as an entry in a linked list.
 * Example:
 *      struct child {
 *              const char *name;
 *              // Linked list of all us children.
 *              struct list_node list;
 *      };
 */
struct list_node
{
        struct list_node *next, *prev;
};

/**
 * struct list_head - the head of a doubly-linked list
 * @h: the list_head (containing next and prev pointers)
 *
 * This is used as the head of a linked list.
 * Example:
 *      struct parent {
 *              const char *name;
 *              struct list_head children;
 *              unsigned int num_children;
 *      };
 */
struct list_head
{
        struct list_node n;
};

#define LIST_LOC __FILE__  ":" stringify(__LINE__)
#define list_debug(h, loc) ((void)loc, h)
#define list_debug_node(n, loc) ((void)loc, n)

/**
 * LIST_HEAD_INIT - initializer for an empty list_head
 * @name: the name of the list.
 *
 * Explicit initializer for an empty list.
 *
 * See also:
 *      LIST_HEAD, list_head_init()
 *
 * Example:
 *      static struct list_head my_list = LIST_HEAD_INIT(my_list);
 */
#define LIST_HEAD_INIT(name) { { &name.n, &name.n } }

/**
 * LIST_HEAD - define and initialize an empty list_head
 * @name: the name of the list.
 *
 * The LIST_HEAD macro defines a list_head and initializes it to an empty
 * list.  It can be prepended by "static" to define a static list_head.
 *
 * See also:
 *      LIST_HEAD_INIT, list_head_init()
 *
 * Example:
 *      static LIST_HEAD(my_global_list);
 */
#define LIST_HEAD(name) \
        struct list_head name = LIST_HEAD_INIT(name)

/**
 * list_head_init - initialize a list_head
 * @h: the list_head to set to the empty list
 *
 * Example:
 *      ...
 *      struct parent *parent = malloc(sizeof(*parent));
 *
 *      list_head_init(&parent->children);
 *      parent->num_children = 0;
 */
static inline void list_head_init(struct list_head *h)
{
        h->n.next = h->n.prev = &h->n;
}

/**
 * list_node_init - initialize a list_node
 * @n: the list_node to link to itself.
 *
 * You don't need to use this normally!  But it lets you list_del(@n)
 * safely.
 */
static inline void list_node_init(struct list_node *n)
{
        n->next = n->prev = n;
}

/**
 * list_add_after - add an entry after an existing node in a linked list
 * @h: the list_head to add the node to (for debugging)
 * @p: the existing list_node to add the node after
 * @n: the new list_node to add to the list.
 *
 * The existing list_node must already be a member of the list.
 * The new list_node does not need to be initialized; it will be overwritten.
 *
 * Example:
 *      struct child c1, c2, c3;
 *      LIST_HEAD(h);
 *
 *      list_add_tail(&h, &c1.list);
 *      list_add_tail(&h, &c3.list);
 *      list_add_after(&h, &c1.list, &c2.list);
 */
#define list_add_after(h, p, n) list_add_after_(h, p, n, LIST_LOC)
static inline void list_add_after_(struct list_head *h,
                                   struct list_node *p,
                                   struct list_node *n,
                                   const char *abortstr)
{
        n->next = p->next;
        n->prev = p;
        p->next->prev = n;
        p->next = n;
        (void)list_debug(h, abortstr);
}

/**
 * list_add - add an entry at the start of a linked list.
 * @h: the list_head to add the node to
 * @n: the list_node to add to the list.
 *
 * The list_node does not need to be initialized; it will be overwritten.
 * Example:
 *      struct child *child = malloc(sizeof(*child));
 *
 *      child->name = "marvin";
 *      list_add(&parent->children, &child->list);
 *      parent->num_children++;
 */
#define list_add(h, n) list_add_(h, n, LIST_LOC)
static inline void list_add_(struct list_head *h,
                             struct list_node *n,
                             const char *abortstr)
{
        list_add_after_(h, &h->n, n, abortstr);
}

/**
 * list_add_before - add an entry before an existing node in a linked list
 * @h: the list_head to add the node to (for debugging)
 * @p: the existing list_node to add the node before
 * @n: the new list_node to add to the list.
 *
 * The existing list_node must already be a member of the list.
 * The new list_node does not need to be initialized; it will be overwritten.
 *
 * Example:
 *      list_head_init(&h);
 *      list_add_tail(&h, &c1.list);
 *      list_add_tail(&h, &c3.list);
 *      list_add_before(&h, &c3.list, &c2.list);
 */
#define list_add_before(h, p, n) list_add_before_(h, p, n, LIST_LOC)
static inline void list_add_before_(struct list_head *h,
                                    struct list_node *p,
                                    struct list_node *n,
                                    const char *abortstr)
{
        n->next = p;
        n->prev = p->prev;
        p->prev->next = n;
        p->prev = n;
        (void)list_debug(h, abortstr);
}

/**
 * list_add_tail - add an entry at the end of a linked list.
 * @h: the list_head to add the node to
 * @n: the list_node to add to the list.
 *
 * The list_node does not need to be initialized; it will be overwritten.
 * Example:
 *      list_add_tail(&parent->children, &child->list);
 *      parent->num_children++;
 */
#define list_add_tail(h, n) list_add_tail_(h, n, LIST_LOC)
static inline void list_add_tail_(struct list_head *h,
                                  struct list_node *n,
                                  const char *abortstr)
{
        list_add_before_(h, &h->n, n, abortstr);
}

/**
 * list_empty - is a list empty?
 * @h: the list_head
 *
 * If the list is empty, returns true.
 *
 * Example:
 *      assert(list_empty(&parent->children) == (parent->num_children == 0));
 */
#define list_empty(h) list_empty_(h, LIST_LOC)
static inline int list_empty_(const struct list_head *h, const char* abortstr)
{
        (void)list_debug(h, abortstr);
        return h->n.next == &h->n;
}

/**
 * list_empty_nodebug - is a list empty (and don't perform debug checks)?
 * @h: the list_head
 *
 * If the list is empty, returns true.
 * This differs from list_empty() in that if CCAN_LIST_DEBUG is set it
 * will NOT perform debug checks. Only use this function if you REALLY
 * know what you're doing.
 *
 * Example:
 *      assert(list_empty_nodebug(&parent->children) == (parent->num_children == 0));
 */
#ifndef CCAN_LIST_DEBUG
#define list_empty_nodebug(h) list_empty(h)
#else
static inline int list_empty_nodebug(const struct list_head *h)
{
        return h->n.next == &h->n;
}
#endif

/**
 * list_del - delete an entry from an (unknown) linked list.
 * @n: the list_node to delete from the list.
 *
 * Note that this leaves @n in an undefined state; it can be added to
 * another list, but not deleted again.
 *
 * See also:
 *      list_del_from(), list_del_init()
 *
 * Example:
 *      list_del(&child->list);
 *      parent->num_children--;
 */
#define list_del(n) list_del_(n, LIST_LOC)
static inline void list_del_(struct list_node *n, const char* abortstr)
{
        (void)list_debug_node(n, abortstr);
        n->next->prev = n->prev;
        n->prev->next = n->next;
#ifdef CCAN_LIST_DEBUG
        /* Catch use-after-del. */
        n->next = n->prev = NULL;
#endif
}

/**
 * list_del_init - delete a node, and reset it so it can be deleted again.
 * @n: the list_node to be deleted.
 *
 * list_del(@n) or list_del_init() again after this will be safe,
 * which can be useful in some cases.
 *
 * See also:
 *      list_del_from(), list_del()
 *
 * Example:
 *      list_del_init(&child->list);
 *      parent->num_children--;
 */
#define list_del_init(n) list_del_init_(n, LIST_LOC)
static inline void list_del_init_(struct list_node *n, const char *abortstr)
{
        list_del_(n, abortstr);
        list_node_init(n);
}

/**
 * list_del_from - delete an entry from a known linked list.
 * @h: the list_head the node is in.
 * @n: the list_node to delete from the list.
 *
 * This explicitly indicates which list a node is expected to be in,
 * which is better documentation and can catch more bugs.
 *
 * See also: list_del()
 *
 * Example:
 *      list_del_from(&parent->children, &child->list);
 *      parent->num_children--;
 */
static inline void list_del_from(struct list_head *h, struct list_node *n)
{
#ifdef CCAN_LIST_DEBUG
        {
                /* Thorough check: make sure it was in list! */
                struct list_node *i;
                for (i = h->n.next; i != n; i = i->next)
                        assert(i != &h->n);
        }
#endif /* CCAN_LIST_DEBUG */

        /* Quick test that catches a surprising number of bugs. */
        assert(!list_empty(h));
        list_del(n);
}

/**
 * list_swap - swap out an entry from an (unknown) linked list for a new one.
 * @o: the list_node to replace from the list.
 * @n: the list_node to insert in place of the old one.
 *
 * Note that this leaves @o in an undefined state; it can be added to
 * another list, but not deleted/swapped again.
 *
 * See also:
 *      list_del()
 *
 * Example:
 *      struct child x1, x2;
 *      LIST_HEAD(xh);
 *
 *      list_add(&xh, &x1.list);
 *      list_swap(&x1.list, &x2.list);
 */
#define list_swap(o, n) list_swap_(o, n, LIST_LOC)
static inline void list_swap_(struct list_node *o,
                              struct list_node *n,
                              const char* abortstr)
{
        (void)list_debug_node(o, abortstr);
        *n = *o;
        n->next->prev = n;
        n->prev->next = n;
#ifdef CCAN_LIST_DEBUG
        /* Catch use-after-del. */
        o->next = o->prev = NULL;
#endif
}

/**
 * list_entry - convert a list_node back into the structure containing it.
 * @n: the list_node
 * @type: the type of the entry
 * @member: the list_node member of the type
 *
 * Example:
 *      // First list entry is children.next; convert back to child.
 *      child = list_entry(parent->children.n.next, struct child, list);
 *
 * See Also:
 *      list_top(), list_for_each()
 */
#define list_entry(n, type, member) container_of(n, type, member)

/**
 * list_top - get the first entry in a list
 * @h: the list_head
 * @type: the type of the entry
 * @member: the list_node member of the type
 *
 * If the list is empty, returns NULL.
 *
 * Example:
 *      struct child *first;
 *      first = list_top(&parent->children, struct child, list);
 *      if (!first)
 *              printf("Empty list!\n");
 */
#define list_top(h, type, member)                                       \
        ((type *)list_top_((h), list_off_(type, member)))

static inline const void *list_top_(const struct list_head *h, size_t off)
{
        if (list_empty(h))
                return NULL;
        return (const char *)h->n.next - off;
}

/**
 * list_pop - remove the first entry in a list
 * @h: the list_head
 * @type: the type of the entry
 * @member: the list_node member of the type
 *
 * If the list is empty, returns NULL.
 *
 * Example:
 *      struct child *one;
 *      one = list_pop(&parent->children, struct child, list);
 *      if (!one)
 *              printf("Empty list!\n");
 */
#define list_pop(h, type, member)                                       \
        ((type *)list_pop_((h), list_off_(type, member)))

static inline const void *list_pop_(const struct list_head *h, size_t off)
{
        struct list_node *n;

        if (list_empty(h))
                return NULL;
        n = h->n.next;
        list_del(n);
        return (const char *)n - off;
}

/**
 * list_tail - get the last entry in a list
 * @h: the list_head
 * @type: the type of the entry
 * @member: the list_node member of the type
 *
 * If the list is empty, returns NULL.
 *
 * Example:
 *      struct child *last;
 *      last = list_tail(&parent->children, struct child, list);
 *      if (!last)
 *              printf("Empty list!\n");
 */
#define list_tail(h, type, member) \
        ((type *)list_tail_((h), list_off_(type, member)))

static inline const void *list_tail_(const struct list_head *h, size_t off)
{
        if (list_empty(h))
                return NULL;
        return (const char *)h->n.prev - off;
}

/**
 * list_for_each - iterate through a list.
 * @h: the list_head (warning: evaluated multiple times!)
 * @i: the structure containing the list_node
 * @member: the list_node member of the structure
 *
 * This is a convenient wrapper to iterate @i over the entire list.  It's
 * a for loop, so you can break and continue as normal.
 *
 * Example:
 *      list_for_each(&parent->children, child, list)
 *              printf("Name: %s\n", child->name);
 */
#define list_for_each(h, i, member)                                     \
        list_for_each_off(h, i, list_off_var_(i, member))

/**
 * list_for_each_rev - iterate through a list backwards.
 * @h: the list_head
 * @i: the structure containing the list_node
 * @member: the list_node member of the structure
 *
 * This is a convenient wrapper to iterate @i over the entire list.  It's
 * a for loop, so you can break and continue as normal.
 *
 * Example:
 *      list_for_each_rev(&parent->children, child, list)
 *              printf("Name: %s\n", child->name);
 */
#define list_for_each_rev(h, i, member)                                 \
        list_for_each_rev_off(h, i, list_off_var_(i, member))

/**
 * list_for_each_rev_safe - iterate through a list backwards,
 * maybe during deletion
 * @h: the list_head
 * @i: the structure containing the list_node
 * @nxt: the structure containing the list_node
 * @member: the list_node member of the structure
 *
 * This is a convenient wrapper to iterate @i over the entire list backwards.
 * It's a for loop, so you can break and continue as normal.  The extra
 * variable * @nxt is used to hold the next element, so you can delete @i
 * from the list.
 *
 * Example:
 *      struct child *next;
 *      list_for_each_rev_safe(&parent->children, child, next, list) {
 *              printf("Name: %s\n", child->name);
 *      }
 */
#define list_for_each_rev_safe(h, i, nxt, member)                       \
        list_for_each_rev_safe_off(h, i, nxt, list_off_var_(i, member))

/**
 * list_for_each_safe - iterate through a list, maybe during deletion
 * @h: the list_head
 * @i: the structure containing the list_node
 * @nxt: the structure containing the list_node
 * @member: the list_node member of the structure
 *
 * This is a convenient wrapper to iterate @i over the entire list.  It's
 * a for loop, so you can break and continue as normal.  The extra variable
 * @nxt is used to hold the next element, so you can delete @i from the list.
 *
 * Example:
 *      list_for_each_safe(&parent->children, child, next, list) {
 *              list_del(&child->list);
 *              parent->num_children--;
 *      }
 */
#define list_for_each_safe(h, i, nxt, member)                           \
        list_for_each_safe_off(h, i, nxt, list_off_var_(i, member))

/**
 * list_next - get the next entry in a list
 * @h: the list_head
 * @i: a pointer to an entry in the list.
 * @member: the list_node member of the structure
 *
 * If @i was the last entry in the list, returns NULL.
 *
 * Example:
 *      struct child *second;
 *      second = list_next(&parent->children, first, list);
 *      if (!second)
 *              printf("No second child!\n");
 */
#define list_next(h, i, member)                                         \
        ((list_typeof(i))list_entry_or_null(list_debug(h,               \
                                            __FILE__ ":" stringify(__LINE__)), \
                                            (i)->member.next,           \
                                            list_off_var_((i), member)))

/**
 * list_prev - get the previous entry in a list
 * @h: the list_head
 * @i: a pointer to an entry in the list.
 * @member: the list_node member of the structure
 *
 * If @i was the first entry in the list, returns NULL.
 *
 * Example:
 *      first = list_prev(&parent->children, second, list);
 *      if (!first)
 *              printf("Can't go back to first child?!\n");
 */
#define list_prev(h, i, member)                                         \
        ((list_typeof(i))list_entry_or_null(list_debug(h,               \
                                            __FILE__ ":" stringify(__LINE__)), \
                                            (i)->member.prev,           \
                                            list_off_var_((i), member)))

/**
 * list_append_list - empty one list onto the end of another.
 * @to: the list to append into
 * @from: the list to empty.
 *
 * This takes the entire contents of @from and moves it to the end of
 * @to.  After this @from will be empty.
 *
 * Example:
 *      struct list_head adopter;
 *
 *      list_append_list(&adopter, &parent->children);
 *      assert(list_empty(&parent->children));
 *      parent->num_children = 0;
 */
#define list_append_list(t, f) list_append_list_(t, f,                  \
                                   __FILE__ ":" stringify(__LINE__))
static inline void list_append_list_(struct list_head *to,
                                     struct list_head *from,
                                     const char *abortstr)
{
        struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
        struct list_node *to_tail = list_debug(to, abortstr)->n.prev;

        /* Sew in head and entire list. */
        to->n.prev = from_tail;
        from_tail->next = &to->n;
        to_tail->next = &from->n;
        from->n.prev = to_tail;

        /* Now remove head. */
        list_del(&from->n);
        list_head_init(from);
}

/**
 * list_prepend_list - empty one list into the start of another.
 * @to: the list to prepend into
 * @from: the list to empty.
 *
 * This takes the entire contents of @from and moves it to the start
 * of @to.  After this @from will be empty.
 *
 * Example:
 *      list_prepend_list(&adopter, &parent->children);
 *      assert(list_empty(&parent->children));
 *      parent->num_children = 0;
 */
#define list_prepend_list(t, f) list_prepend_list_(t, f, LIST_LOC)
static inline void list_prepend_list_(struct list_head *to,
                                      struct list_head *from,
                                      const char *abortstr)
{
        struct list_node *from_tail = list_debug(from, abortstr)->n.prev;
        struct list_node *to_head = list_debug(to, abortstr)->n.next;

        /* Sew in head and entire list. */
        to->n.next = &from->n;
        from->n.prev = &to->n;
        to_head->prev = from_tail;
        from_tail->next = to_head;

        /* Now remove head. */
        list_del(&from->n);
        list_head_init(from);
}

/* internal macros, do not use directly */
#define list_for_each_off_dir_(h, i, off, dir)                          \
        for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir,      \
                                   (off));                              \
        list_node_from_off_((void *)i, (off)) != &(h)->n;               \
        i = list_node_to_off_(list_node_from_off_((void *)i, (off))->dir, \
                              (off)))

#define list_for_each_safe_off_dir_(h, i, nxt, off, dir)                \
        for (i = list_node_to_off_(list_debug(h, LIST_LOC)->n.dir,      \
                                   (off)),                              \
        nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir,     \
                                (off));                                 \
        list_node_from_off_(i, (off)) != &(h)->n;                       \
        i = nxt,                                                        \
        nxt = list_node_to_off_(list_node_from_off_(i, (off))->dir,     \
                                (off)))

/**
 * list_for_each_off - iterate through a list of memory regions.
 * @h: the list_head
 * @i: the pointer to a memory region wich contains list node data.
 * @off: offset(relative to @i) at which list node data resides.
 *
 * This is a low-level wrapper to iterate @i over the entire list, used to
 * implement all oher, more high-level, for-each constructs. It's a for loop,
 * so you can break and continue as normal.
 *
 * WARNING! Being the low-level macro that it is, this wrapper doesn't know
 * nor care about the type of @i. The only assumtion made is that @i points
 * to a chunk of memory that at some @offset, relative to @i, contains a
 * properly filled `struct node_list' which in turn contains pointers to
 * memory chunks and it's turtles all the way down. Whith all that in mind
 * remember that given the wrong pointer/offset couple this macro will
 * happilly churn all you memory untill SEGFAULT stops it, in other words
 * caveat emptor.
 *
 * It is worth mentioning that one of legitimate use-cases for that wrapper
 * is operation on opaque types with known offset for `struct list_node'
 * member(preferably 0), because it allows you not to disclose the type of
 * @i.
 *
 * Example:
 *      list_for_each_off(&parent->children, child,
 *                              offsetof(struct child, list))
 *              printf("Name: %s\n", child->name);
 */
#define list_for_each_off(h, i, off)                                    \
        list_for_each_off_dir_((h),(i),(off),next)

/**
 * list_for_each_rev_off - iterate through a list of memory regions backwards
 * @h: the list_head
 * @i: the pointer to a memory region wich contains list node data.
 * @off: offset(relative to @i) at which list node data resides.
 *
 * See list_for_each_off for details
 */
#define list_for_each_rev_off(h, i, off)                                    \
        list_for_each_off_dir_((h),(i),(off),prev)

/**
 * list_for_each_safe_off - iterate through a list of memory regions, maybe
 * during deletion
 * @h: the list_head
 * @i: the pointer to a memory region wich contains list node data.
 * @nxt: the structure containing the list_node
 * @off: offset(relative to @i) at which list node data resides.
 *
 * For details see `list_for_each_off' and `list_for_each_safe'
 * descriptions.
 *
 * Example:
 *      list_for_each_safe_off(&parent->children, child,
 *              next, offsetof(struct child, list))
 *              printf("Name: %s\n", child->name);
 */
#define list_for_each_safe_off(h, i, nxt, off)                          \
        list_for_each_safe_off_dir_((h),(i),(nxt),(off),next)

/**
 * list_for_each_rev_safe_off - iterate backwards through a list of
 * memory regions, maybe during deletion
 * @h: the list_head
 * @i: the pointer to a memory region wich contains list node data.
 * @nxt: the structure containing the list_node
 * @off: offset(relative to @i) at which list node data resides.
 *
 * For details see `list_for_each_rev_off' and `list_for_each_rev_safe'
 * descriptions.
 *
 * Example:
 *      list_for_each_rev_safe_off(&parent->children, child,
 *              next, offsetof(struct child, list))
 *              printf("Name: %s\n", child->name);
 */
#define list_for_each_rev_safe_off(h, i, nxt, off)                      \
        list_for_each_safe_off_dir_((h),(i),(nxt),(off),prev)

/* Other -off variants. */
#define list_entry_off(n, type, off)            \
        ((type *)list_node_from_off_((n), (off)))

#define list_head_off(h, type, off)             \
        ((type *)list_head_off((h), (off)))

#define list_tail_off(h, type, off)             \
        ((type *)list_tail_((h), (off)))

#define list_add_off(h, n, off)                 \
        list_add((h), list_node_from_off_((n), (off)))

#define list_del_off(n, off)                    \
        list_del(list_node_from_off_((n), (off)))

#define list_del_from_off(h, n, off)                    \
        list_del_from(h, list_node_from_off_((n), (off)))

/* Offset helper functions so we only single-evaluate. */
static inline void *list_node_to_off_(struct list_node *node, size_t off)
{
        return (void *)((char *)node - off);
}
static inline struct list_node *list_node_from_off_(void *ptr, size_t off)
{
        return (struct list_node *)((char *)ptr + off);
}

/* Get the offset of the member, but make sure it's a list_node. */
#define list_off_(type, member)                                 \
        (container_off(type, member) +                          \
         check_type(((type *)0)->member, struct list_node))

#define list_off_var_(var, member)                      \
        (container_off_var(var, member) +               \
         check_type(var->member, struct list_node))

#if HAVE_TYPEOF
#define list_typeof(var) typeof(var)
#else
#define list_typeof(var) void *
#endif

/* Returns member, or NULL if at end of list. */
static inline void *list_entry_or_null(const struct list_head *h,
                                       const struct list_node *n,
                                       size_t off)
{
        if (n == &h->n)
                return NULL;
        return (char *)n - off;
}
#endif /* CCAN_LIST_H */

/* [previous][next][first][last][top][bottom][index][help] */