/* */
DEFINITIONS
This source file includes following definitions.
- new_size
- stat_col
- st_init_table_with_size
- st_init_table
- st_init_numtable
- st_init_numtable_with_size
- st_init_strtable
- st_init_strtable_with_size
- st_init_strcasetable
- st_init_strcasetable_with_size
- st_clear
- st_free_table
- st_lookup
- st_get_key
- unpack_entries
- st_insert
- st_add_direct
- rehash
- st_copy
- st_delete
- st_delete_safe
- st_cleanup_safe
- st_foreach
- st_reverse_foreach
- strhash
- st_strcasecmp
- st_strncasecmp
- strcasehash
- st_numcmp
- st_numhash
/* This is a public domain general purpose hash table package written by Peter Moore @ UCB. */
/* static char sccsid[] = "@(#) st.c 5.1 89/12/14 Crucible"; */
#ifdef NOT_RUBY
#include "regint.h"
#include "st.h"
#else
#include "ruby/ruby.h"
#endif
#include <stdio.h>
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#include <string.h>
typedef struct st_table_entry st_table_entry;
struct st_table_entry {
unsigned int hash;
st_data_t key;
st_data_t record;
st_table_entry *next;
st_table_entry *fore, *back;
};
#define ST_DEFAULT_MAX_DENSITY 5
#define ST_DEFAULT_INIT_TABLE_SIZE 11
/*
* DEFAULT_MAX_DENSITY is the default for the largest we allow the
* average number of items per bin before increasing the number of
* bins
*
* DEFAULT_INIT_TABLE_SIZE is the default for the number of bins
* allocated initially
*
*/
static const struct st_hash_type type_numhash = {
st_numcmp,
st_numhash,
};
/* extern int strcmp(const char *, const char *); */
static int strhash(const char *);
static const struct st_hash_type type_strhash = {
strcmp,
strhash,
};
static int strcasehash(const char *);
static const struct st_hash_type type_strcasehash = {
st_strcasecmp,
strcasehash,
};
static void rehash(st_table *);
#ifdef RUBY
#define malloc xmalloc
#define calloc xcalloc
#define free(x) xfree(x)
#endif
#define alloc(type) (type*)malloc((size_t)sizeof(type))
#define Calloc(n,s) (char*)calloc((n),(s))
#define EQUAL(table,x,y) ((x)==(y) || (*table->type->compare)((x),(y)) == 0)
#define do_hash(key,table) (unsigned int)(*(table)->type->hash)((key))
#define do_hash_bin(key,table) (do_hash(key, table)%(table)->num_bins)
/*
* MINSIZE is the minimum size of a dictionary.
*/
#define MINSIZE 8
/*
Table of prime numbers 2^n+a, 2<=n<=30.
*/
static const long primes[] = {
8 + 3,
16 + 3,
32 + 5,
64 + 3,
128 + 3,
256 + 27,
512 + 9,
1024 + 9,
2048 + 5,
4096 + 3,
8192 + 27,
16384 + 43,
32768 + 3,
65536 + 45,
131072 + 29,
262144 + 3,
524288 + 21,
1048576 + 7,
2097152 + 17,
4194304 + 15,
8388608 + 9,
16777216 + 43,
33554432 + 35,
67108864 + 15,
134217728 + 29,
268435456 + 3,
536870912 + 11,
1073741824 + 85,
0
};
static int
new_size(int size)
{
int i;
#if 0
for (i=3; i<31; i++) {
if ((1<<i) > size) return 1<<i;
}
return -1;
#else
int newsize;
for (i = 0, newsize = MINSIZE;
i < (int )(sizeof(primes)/sizeof(primes[0]));
i++, newsize <<= 1)
{
if (newsize > size) return primes[i];
}
/* Ran out of polynomials */
#ifndef NOT_RUBY
rb_raise(rb_eRuntimeError, "st_table too big");
#endif
return -1; /* should raise exception */
#endif
}
#ifdef HASH_LOG
static int collision = 0;
static int init_st = 0;
static void
stat_col()
{
FILE *f = fopen("/tmp/col", "w");
fprintf(f, "collision: %d\n", collision);
fclose(f);
}
#endif
#define MAX_PACKED_NUMHASH 5
st_table*
st_init_table_with_size(const struct st_hash_type *type, int size)
{
st_table *tbl;
#ifdef HASH_LOG
if (init_st == 0) {
init_st = 1;
atexit(stat_col);
}
#endif
size = new_size(size); /* round up to prime number */
tbl = alloc(st_table);
tbl->type = type;
tbl->num_entries = 0;
tbl->entries_packed = type == &type_numhash && size/2 <= MAX_PACKED_NUMHASH;
tbl->num_bins = size;
tbl->bins = (st_table_entry **)Calloc(size, sizeof(st_table_entry*));
tbl->head = 0;
return tbl;
}
st_table*
st_init_table(const struct st_hash_type *type)
{
return st_init_table_with_size(type, 0);
}
st_table*
st_init_numtable(void)
{
return st_init_table(&type_numhash);
}
st_table*
st_init_numtable_with_size(int size)
{
return st_init_table_with_size(&type_numhash, size);
}
st_table*
st_init_strtable(void)
{
return st_init_table(&type_strhash);
}
st_table*
st_init_strtable_with_size(int size)
{
return st_init_table_with_size(&type_strhash, size);
}
st_table*
st_init_strcasetable(void)
{
return st_init_table(&type_strcasehash);
}
st_table*
st_init_strcasetable_with_size(int size)
{
return st_init_table_with_size(&type_strcasehash, size);
}
void
st_clear(st_table *table)
{
register st_table_entry *ptr, *next;
int i;
if (table->entries_packed) {
table->num_entries = 0;
return;
}
for(i = 0; i < table->num_bins; i++) {
ptr = table->bins[i];
table->bins[i] = 0;
while (ptr != 0) {
next = ptr->next;
free(ptr);
ptr = next;
}
}
table->num_entries = 0;
table->head = 0;
}
void
st_free_table(st_table *table)
{
st_clear(table);
free(table->bins);
free(table);
}
#define PTR_NOT_EQUAL(table, ptr, hash_val, key) \
((ptr) != 0 && (ptr->hash != (hash_val) || !EQUAL((table), (key), (ptr)->key)))
#ifdef HASH_LOG
#define COLLISION collision++
#else
#define COLLISION
#endif
#define FIND_ENTRY(table, ptr, hash_val, bin_pos) do {\
bin_pos = hash_val%(table)->num_bins;\
ptr = (table)->bins[bin_pos];\
if (PTR_NOT_EQUAL(table, ptr, hash_val, key)) {\
COLLISION;\
while (PTR_NOT_EQUAL(table, ptr->next, hash_val, key)) {\
ptr = ptr->next;\
}\
ptr = ptr->next;\
}\
} while (0)
int
st_lookup(st_table *table, register st_data_t key, st_data_t *value)
{
unsigned int hash_val, bin_pos;
register st_table_entry *ptr;
if (table->entries_packed) {
int i;
for (i = 0; i < table->num_entries; i++) {
if ((st_data_t)table->bins[i*2] == key) {
if (value !=0) *value = (st_data_t)table->bins[i*2+1];
return 1;
}
}
return 0;
}
hash_val = do_hash(key, table);
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr == 0) {
return 0;
}
else {
if (value != 0) *value = ptr->record;
return 1;
}
}
int
st_get_key(st_table *table, register st_data_t key, st_data_t *result)
{
unsigned int hash_val, bin_pos;
register st_table_entry *ptr;
if (table->entries_packed) {
int i;
for (i = 0; i < table->num_entries; i++) {
if ((st_data_t)table->bins[i*2] == key) {
if (result !=0) *result = (st_data_t)table->bins[i*2];
return 1;
}
}
return 0;
}
hash_val = do_hash(key, table);
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr == 0) {
return 0;
}
else {
if (result != 0) *result = ptr->key;
return 1;
}
}
#define ADD_DIRECT(table, key, value, hash_val, bin_pos)\
do {\
st_table_entry *entry, *head;\
if (table->num_entries/(table->num_bins) > ST_DEFAULT_MAX_DENSITY) {\
rehash(table);\
bin_pos = hash_val % table->num_bins;\
}\
\
entry = alloc(st_table_entry);\
\
entry->hash = hash_val;\
entry->key = key;\
entry->record = value;\
entry->next = table->bins[bin_pos];\
if ((head = table->head) != 0) {\
entry->fore = head;\
(entry->back = head->back)->fore = entry;\
head->back = entry;\
}\
else {\
table->head = entry->fore = entry->back = entry;\
}\
table->bins[bin_pos] = entry;\
table->num_entries++;\
} while (0)
static void
unpack_entries(register st_table *table)
{
int i;
struct st_table_entry *packed_bins[MAX_PACKED_NUMHASH*2];
int num_entries = table->num_entries;
memcpy(packed_bins, table->bins, sizeof(struct st_table_entry *) * num_entries*2);
table->entries_packed = 0;
table->num_entries = 0;
memset(table->bins, 0, sizeof(struct st_table_entry *) * table->num_bins);
for (i = 0; i < num_entries; i++) {
st_insert(table, (st_data_t)packed_bins[i*2], (st_data_t)packed_bins[i*2+1]);
}
}
int
st_insert(register st_table *table, register st_data_t key, st_data_t value)
{
unsigned int hash_val, bin_pos;
register st_table_entry *ptr;
if (table->entries_packed) {
int i;
for (i = 0; i < table->num_entries; i++) {
if ((st_data_t)table->bins[i*2] == key) {
table->bins[i*2+1] = (struct st_table_entry*)value;
return 1;
}
}
if ((table->num_entries+1) * 2 <= table->num_bins && table->num_entries+1 <= MAX_PACKED_NUMHASH) {
i = table->num_entries++;
table->bins[i*2] = (struct st_table_entry*)key;
table->bins[i*2+1] = (struct st_table_entry*)value;
return 0;
}
else {
unpack_entries(table);
}
}
hash_val = do_hash(key, table);
FIND_ENTRY(table, ptr, hash_val, bin_pos);
if (ptr == 0) {
ADD_DIRECT(table, key, value, hash_val, bin_pos);
return 0;
}
else {
ptr->record = value;
return 1;
}
}
void
st_add_direct(st_table *table, st_data_t key, st_data_t value)
{
unsigned int hash_val, bin_pos;
if (table->entries_packed) {
int i;
if ((table->num_entries+1) * 2 <= table->num_bins && table->num_entries+1 <= MAX_PACKED_NUMHASH) {
i = table->num_entries++;
table->bins[i*2] = (struct st_table_entry*)key;
table->bins[i*2+1] = (struct st_table_entry*)value;
return;
}
else {
unpack_entries(table);
}
}
hash_val = do_hash(key, table);
bin_pos = hash_val % table->num_bins;
ADD_DIRECT(table, key, value, hash_val, bin_pos);
}
static void
rehash(register st_table *table)
{
register st_table_entry *ptr, **new_bins;
int i, new_num_bins;
unsigned int hash_val;
new_num_bins = new_size(table->num_bins+1);
new_bins = (st_table_entry**)
xrealloc(table->bins, new_num_bins * sizeof(st_table_entry*));
for (i = 0; i < new_num_bins; ++i) new_bins[i] = 0;
table->num_bins = new_num_bins;
table->bins = new_bins;
if ((ptr = table->head) != 0) {
do {
hash_val = ptr->hash % new_num_bins;
ptr->next = new_bins[hash_val];
new_bins[hash_val] = ptr;
} while ((ptr = ptr->fore) != table->head);
}
}
st_table*
st_copy(st_table *old_table)
{
st_table *new_table;
st_table_entry *ptr, *entry, *prev, **tail;
int num_bins = old_table->num_bins;
unsigned int hash_val;
new_table = alloc(st_table);
if (new_table == 0) {
return 0;
}
*new_table = *old_table;
new_table->bins = (st_table_entry**)
Calloc((unsigned)num_bins, sizeof(st_table_entry*));
if (new_table->bins == 0) {
free(new_table);
return 0;
}
if (old_table->entries_packed) {
memcpy(new_table->bins, old_table->bins, sizeof(struct st_table_entry *) * old_table->num_bins);
return new_table;
}
if ((ptr = old_table->head) != 0) {
prev = 0;
tail = &new_table->head;
do {
entry = alloc(st_table_entry);
if (entry == 0) {
st_free_table(new_table);
return 0;
}
*entry = *ptr;
hash_val = entry->hash % num_bins;
entry->next = new_table->bins[hash_val];
new_table->bins[hash_val] = entry;
entry->back = prev;
*tail = prev = entry;
tail = &entry->fore;
} while ((ptr = ptr->fore) != old_table->head);
entry = new_table->head;
entry->back = prev;
*tail = entry;
}
return new_table;
}
#define REMOVE_ENTRY(table, ptr) do \
{ \
if (ptr == ptr->fore) { \
table->head = 0; \
} \
else { \
st_table_entry *fore = ptr->fore, *back = ptr->back; \
fore->back = back; \
back->fore = fore; \
if (ptr == table->head) table->head = fore; \
} \
table->num_entries--; \
} while (0)
int
st_delete(register st_table *table, register st_data_t *key, st_data_t *value)
{
unsigned int hash_val;
st_table_entry **prev;
register st_table_entry *ptr;
if (table->entries_packed) {
int i;
for (i = 0; i < table->num_entries; i++) {
if ((st_data_t)table->bins[i*2] == *key) {
if (value != 0) *value = (st_data_t)table->bins[i*2+1];
table->num_entries--;
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
return 1;
}
}
if (value != 0) *value = 0;
return 0;
}
hash_val = do_hash_bin(*key, table);
for (prev = &table->bins[hash_val]; (ptr = *prev) != 0; prev = &ptr->next) {
if (EQUAL(table, *key, ptr->key)) {
*prev = ptr->next;
REMOVE_ENTRY(table, ptr);
if (value != 0) *value = ptr->record;
*key = ptr->key;
free(ptr);
return 1;
}
}
if (value != 0) *value = 0;
return 0;
}
int
st_delete_safe(register st_table *table, register st_data_t *key, st_data_t *value, st_data_t never)
{
unsigned int hash_val;
register st_table_entry *ptr;
hash_val = do_hash_bin(*key, table);
ptr = table->bins[hash_val];
for (; ptr != 0; ptr = ptr->next) {
if ((ptr->key != never) && EQUAL(table, ptr->key, *key)) {
REMOVE_ENTRY(table, ptr);
*key = ptr->key;
if (value != 0) *value = ptr->record;
ptr->key = ptr->record = never;
return 1;
}
}
if (value != 0) *value = 0;
return 0;
}
void
st_cleanup_safe(st_table *table, st_data_t never)
{
st_table_entry *ptr, **last, *tmp;
int i;
for (i = 0; i < table->num_bins; i++) {
ptr = *(last = &table->bins[i]);
while (ptr != 0) {
if (ptr->key == never) {
tmp = ptr;
*last = ptr = ptr->next;
free(tmp);
}
else {
ptr = *(last = &ptr->next);
}
}
}
}
int
st_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
{
st_table_entry *ptr, **last, *tmp;
enum st_retval retval;
int i, end;
if (table->entries_packed) {
for (i = 0; i < table->num_entries; i++) {
int j;
st_data_t key, val;
key = (st_data_t)table->bins[i*2];
val = (st_data_t)table->bins[i*2+1];
retval = (*func)(key, val, arg);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
for (j = 0; j < table->num_entries; j++) {
if ((st_data_t)table->bins[j*2] == key)
break;
}
if (j == table->num_entries) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
/* fall through */
case ST_CONTINUE:
break;
case ST_STOP:
return 0;
case ST_DELETE:
table->num_entries--;
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
i--;
break;
}
}
return 0;
}
if ((ptr = table->head) != 0) {
do {
end = ptr->fore == table->head;
retval = (*func)(ptr->key, ptr->record, arg);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
i = ptr->hash % table->num_bins;
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
if (!tmp) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
}
/* fall through */
case ST_CONTINUE:
ptr = ptr->fore;
break;
case ST_STOP:
return 0;
case ST_DELETE:
last = &table->bins[ptr->hash % table->num_bins];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->fore;
*last = ptr->next;
REMOVE_ENTRY(table, ptr);
free(ptr);
if (ptr == tmp) return 0;
ptr = tmp;
break;
}
}
}
} while (!end && table->head);
}
return 0;
}
#if 0 /* unused right now */
int
st_reverse_foreach(st_table *table, int (*func)(ANYARGS), st_data_t arg)
{
st_table_entry *ptr, **last, *tmp;
enum st_retval retval;
int i, end;
if (table->entries_packed) {
for (i = table->num_entries-1; 0 <= i; i--) {
int j;
st_data_t key, val;
key = (st_data_t)table->bins[i*2];
val = (st_data_t)table->bins[i*2+1];
retval = (*func)(key, val, arg);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
for (j = 0; j < table->num_entries; j++) {
if ((st_data_t)table->bins[j*2] == key)
break;
}
if (j == table->num_entries) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
/* fall through */
case ST_CONTINUE:
break;
case ST_STOP:
return 0;
case ST_DELETE:
table->num_entries--;
memmove(&table->bins[i*2], &table->bins[(i+1)*2],
sizeof(struct st_table_entry*) * 2*(table->num_entries-i));
break;
}
}
return 0;
}
if ((ptr = table->head) != 0) {
ptr = ptr->back;
do {
end = ptr == table->head;
retval = (*func)(ptr->key, ptr->record, arg, 0);
switch (retval) {
case ST_CHECK: /* check if hash is modified during iteration */
i = ptr->hash % table->num_bins;
for (tmp = table->bins[i]; tmp != ptr; tmp = tmp->next) {
if (!tmp) {
/* call func with error notice */
retval = (*func)(0, 0, arg, 1);
return 1;
}
}
/* fall through */
case ST_CONTINUE:
ptr = ptr->back;
break;
case ST_STOP:
return 0;
case ST_DELETE:
last = &table->bins[ptr->hash % table->num_bins];
for (; (tmp = *last) != 0; last = &tmp->next) {
if (ptr == tmp) {
tmp = ptr->back;
*last = ptr->next;
REMOVE_ENTRY(table, ptr);
free(ptr);
ptr = tmp;
break;
}
}
ptr = ptr->next;
free(tmp);
table->num_entries--;
}
} while (!end && table->head);
}
return 0;
}
#endif
/*
* hash_32 - 32 bit Fowler/Noll/Vo FNV-1a hash code
*
* @(#) $Hash32: Revision: 1.1 $
* @(#) $Hash32: Id: hash_32a.c,v 1.1 2003/10/03 20:38:53 chongo Exp $
* @(#) $Hash32: Source: /usr/local/src/cmd/fnv/RCS/hash_32a.c,v $
*
***
*
* Fowler/Noll/Vo hash
*
* The basis of this hash algorithm was taken from an idea sent
* as reviewer comments to the IEEE POSIX P1003.2 committee by:
*
* Phong Vo (http://www.research.att.com/info/kpv/)
* Glenn Fowler (http://www.research.att.com/~gsf/)
*
* In a subsequent ballot round:
*
* Landon Curt Noll (http://www.isthe.com/chongo/)
*
* improved on their algorithm. Some people tried this hash
* and found that it worked rather well. In an EMail message
* to Landon, they named it the ``Fowler/Noll/Vo'' or FNV hash.
*
* FNV hashes are designed to be fast while maintaining a low
* collision rate. The FNV speed allows one to quickly hash lots
* of data while maintaining a reasonable collision rate. See:
*
* http://www.isthe.com/chongo/tech/comp/fnv/index.html
*
* for more details as well as other forms of the FNV hash.
***
*
* To use the recommended 32 bit FNV-1a hash, pass FNV1_32A_INIT as the
* Fnv32_t hashval argument to fnv_32a_buf() or fnv_32a_str().
*
***
*
* Please do not copyright this code. This code is in the public domain.
*
* LANDON CURT NOLL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
* EVENT SHALL LANDON CURT NOLL BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* By:
* chongo <Landon Curt Noll> /\oo/\
* http://www.isthe.com/chongo/
*
* Share and Enjoy! :-)
*/
/*
* 32 bit FNV-1 and FNV-1a non-zero initial basis
*
* The FNV-1 initial basis is the FNV-0 hash of the following 32 octets:
*
* chongo <Landon Curt Noll> /\../\
*
* NOTE: The \'s above are not back-slashing escape characters.
* They are literal ASCII backslash 0x5c characters.
*
* NOTE: The FNV-1a initial basis is the same value as FNV-1 by definition.
*/
#define FNV1_32A_INIT 0x811c9dc5
/*
* 32 bit magic FNV-1a prime
*/
#define FNV_32_PRIME 0x01000193
static int
strhash(register const char *string)
{
register unsigned int hval = FNV1_32A_INIT;
/*
* FNV-1a hash each octet in the buffer
*/
while (*string) {
/* xor the bottom with the current octet */
hval ^= (unsigned int)*string++;
/* multiply by the 32 bit FNV magic prime mod 2^32 */
hval *= FNV_32_PRIME;
}
return hval;
}
int
st_strcasecmp(const char *s1, const char *s2)
{
unsigned int c1, c2;
while (1) {
c1 = (unsigned char)*s1++;
c2 = (unsigned char)*s2++;
if (c1 == '\0' || c2 == '\0') {
if (c1 != '\0') return 1;
if (c2 != '\0') return -1;
return 0;
}
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
if (c1 != c2) {
if (c1 > c2)
return 1;
else
return -1;
}
}
}
int
st_strncasecmp(const char *s1, const char *s2, size_t n)
{
unsigned int c1, c2;
while (n--) {
c1 = (unsigned char)*s1++;
c2 = (unsigned char)*s2++;
if (c1 == '\0' || c2 == '\0') {
if (c1 != '\0') return 1;
if (c2 != '\0') return -1;
return 0;
}
if ((unsigned int)(c1 - 'A') <= ('Z' - 'A')) c1 += 'a' - 'A';
if ((unsigned int)(c2 - 'A') <= ('Z' - 'A')) c2 += 'a' - 'A';
if (c1 != c2) {
if (c1 > c2)
return 1;
else
return -1;
}
}
return 0;
}
static int
strcasehash(register const char *string)
{
register unsigned int hval = FNV1_32A_INIT;
/*
* FNV-1a hash each octet in the buffer
*/
while (*string) {
unsigned int c = (unsigned char)*string++;
if ((unsigned int)(c - 'A') <= ('Z' - 'A')) c += 'a' - 'A';
hval ^= c;
/* multiply by the 32 bit FNV magic prime mod 2^32 */
hval *= FNV_32_PRIME;
}
return hval;
}
int
st_numcmp(st_data_t x, st_data_t y)
{
return x != y;
}
int
st_numhash(st_data_t n)
{
return (int)n;
}